Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population.more » « less
-
Abstract Micromagnetic modeling allows the systematic study of the effects of particle size and shape on the first‐order reversal curve (FORC) magnetic hysteresis response for magnetite particles in the single‐domain (SD) and pseudo‐single domain (PSD) particle size range. The interpretation of FORCs, though widely used, has been highly subjective. Here, we use micromagnetics to model randomly oriented distributions of particles to allow more physically meaningful interpretations. We show that one commonly found type of PSD particle—namely the single vortex (SV) particle—has far more complex signals than SD particles, with multiple peaks and troughs in the FORC distribution, where the peaks have higher switching fields for larger SV particles. Particles in the SD to SV transition zone have the lowest switching fields. Symmetrical and prolate particles display similar behavior, with distinctive peaks forming near the vertical axis of the FORC diagram. In contrast, highly oblate particles produce “butterfly” structures, suggesting that these are potentially diagnostic of particle morphology. We also consider FORC diagrams for distributions of particle sizes and shapes and produce an online application that users can use to build their own FORC distributions. There is good agreement between the model predictions for distributions of particle sizes and shapes, and the published experimental literature.more » « less
-
Abstract The ability of rocks to hold a reliable record of the ancient geomagnetic field depends on the structure and stability of magnetic domain‐states contained within constituent particles. In paleomagnetic studies, the Day plot is an easily constructed graph of magnetic hysteresis parameters that is frequently used to estimate the likely magnetic recording stability of samples. Often samples plot in the region of the Day plot attributed to so‐called pseudo‐single‐domain particles with little understanding of the implications for domain‐states or recording fidelity. Here we use micromagnetic models to explore the hysteresis parameters of magnetite particles with idealized prolate and oblate truncated‐octahedral geometries containing single domain (SD), single‐vortex and occasionally multi‐vortex states. We show that these domain states exhibit a well‐defined trend in the Day plot that extends from the SD region well into the multi‐domain region, all of which are likely to be stable remanence carriers. We suggest that although the interpretation of the Day plot and its variants might be subject to ambiguities, if the magnetic mineralogy is known, it can still provide some useful insights about paleomagnetic specimens' dominant domain state, average particle sizes and, consequently, their paleomagnetic stability.more » « less
An official website of the United States government
